

Devoir de synthèse N°2

A.S:2009/2010

Classes 2sc283

Durée: 2.h

Le devoir comporte une feuille annexe à rendre avec la copie d'examen

Exercice N°1:(6 pts) (40 mn)

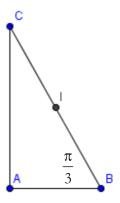
Soit U la suite définie sur IN par : $\begin{cases} U_0 = 1 \\ U_{n+1} = 2U_n - 3 \end{cases}$

- 1/a) Calculer U₁ et U₂
 - b) Vérifier que U n'est ni une suite arithmétique ni une suite géométrique
- 2/ Soit la suite V définie sur IN par : $V_n = U_n 3$
 - a) Montrer que V est une suite géométrique de raison q = 2 et préciser son premier terme.
 - b) Exprimer V_n puis U_n en fonction de n
 - c) Le nombre -29 peut il être la valeur d'un terme de la suite U
 - c) Calculer les sommes : $S = V_2 + V_3 + \dots + V_{11}$ et $S = U_2 + U_3 + \dots + U_{11}$

Exercice N°2: (4 pts) (25 mn)

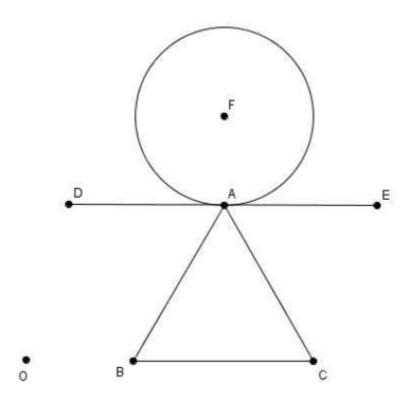
Dans la figure ci-dessous ABC est un triangle rectangle en A tel que $\overrightarrow{E}BA = \frac{\pi}{3}$ et I le milieu de [BC]

Soit R la rotation directe de centre A et d'angle $\frac{\pi}{3}$

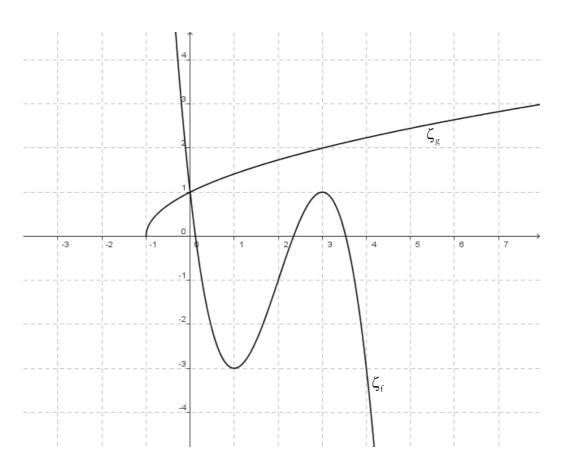

- 1/a) Montrer que le triangle ABI est équilatéral
 - b) Déduire R(B)
- 2/ la parallèle à (BC) passant par A et la parallèle à (AI) passant par C Se coupent en D.
 - a) Montrer que l'angle $IAD = \frac{\pi}{2}$
 - b) Déduire que D=R(I)
- 3/ Soit J le milieu du segment [I B]
 - a) Construire J' = R(J)
 - b) Montrer que les points J', I et D sont alignés

Exercice N°3:(3 pts) (15 mn)

Soit f la fonction définie par $f(x) = \sqrt{x^2 - 4}$


- 1/ Déterminer le domaine de définition de f
- 2/ Etudier la parité de f
- 3/ Montrer que f est décroissante sur l'intervalle $\left|-\infty,-2\right|$

ANNEXE à rendre avec la copie


Exercice N°4:(3 pts) (20 mn)

- 1/ Tracer l'image de la figure donnée par la rotation directe de centre O et d'angle $\frac{\pi}{2}$
- 2/ Tracer l'image de la figure donnée par l'homothétie de centre 0 et de rapport $-\frac{1}{2}$

Exercice N°5:(4 pts) (20 mn)

Ci dessous, les courbes représentatives d'une fonction f définie sur \square et d'une fonction g définie sur $\left[-1,+\infty\right[$

1/ Répondre par vrai ou faux

- a) la fonction g est décroissante sur l'intervalle [-1,0]
- b) l'équation f(x) = -3 admet deux solutions
- c) f(x) = g(x) pour x = 1
- d) Pour tout x de l'intervalle $\left[-1,+\infty\right[$ on a $g(x) \ge 0$

2/ Compléter:

- a) f admet un minimum local en de valeur
- b) f admet un maximum local en de valeur
- c) le nombre de solution de l'équation f(x) = 0 est
- d) $g(x) \le f(x)$ pour $x \in \dots$